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In this series of papers the crystal structures of compounds with composition ABX3 and AzBX6 are derived 
from a basic lattice, mainly using qualitative ionic bonding rules (Part I) (A represents a large cation that 
can replace an anion, B is a small interstitial cation, Xis halogen ion). In Part II a method will be outlined 
for selecting the appropriate structure for a particular compound. This method is tested on the experi- 
mental structure data of the ABX3 halides in Part II, and applied to compounds AzBX6, AzBK6-p,Y~, and 
A2BX6_p,_p,, Y~,.Zp,, in Parts III, IV and V, respectively ( X -  halogen; Y, Z = halogen, O, OH, H20, N or 
an anion vacancy). 

In the present paper (Part I), we start with the derivation of the ideal structures (i.e., for A and Xions of 
equal diameter), for hypothetical compounds AX3. It is shown that, if A-A contacts are not allowed in a 
stacking of triangular nets (viz., in "close-packed" layers), each layer must have the composition AX3 and 
the same type of order. This order can be one of two simple types ("T" and "R") or any combination of 
these. From these AX3 structures the ABX3 and AzBX6 structures are derived. On the basis of mainly simple 
electrostatic considerations, structures with anion surroundings that are most unlikely are excluded. Use is 
made of the representation of anion surroundings by space-filling polyhedra (SFP). Finally, the deviations 
from the ideal ABX3 and A2BX6 structures, resulting from variations in size of the A, B and Xions, are 
considered. 

1.1. Introduction 

In our  l abo ra to ry  a b road  invest igat ion is in 
progress  into the possibi l i ty  of  predic t ing  or  
de r iv ing - - f a i r ly  r o u g h l y - - a  crystal  s tructure for  
any given c o m p o u n d  aAm bB, xXp, where a, b and  x 
represent  the coord ina t ions  of  the cat ions A and  
B and  anions X, respectively. Hav ing  designed a 
structure,  a c o m p o u n d  (or compounds )  must  be 
selected tha t  may  show this crystal  structure.  
W h e n  a t tempts  to  p repare  these c o m p o u n d s  
succeed, the s tructure may  prove to  be different 
f rom the pred ic ted  one. This m a y  mean  tha t  
ei ther  we have chosen the wrong  substance or  
tha t  the c o m p o u n d  m a y  assume the p red ic ted  
s t ructure  at  a different t empera tu re  a n d / o r  
app l ied  pressure  or  tha t  our  model  is wrong.  
Al terna te ly ,  for  all  l ikely compounds  ano the r  
s t ructure  may  be more  stable,  even i f  sl ightly so. 
The  ca lcula t ion  o f  small  differences in s tabi l i ty  
will r ema in  difficult for  some t ime to come,  in 
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spite o f  the recent  improvemen t  o f  ca lcula t ing  
facilities. I f  p r epa ra t i on  o f  the selected com-  
p o u n d  fails, this  may  be due  to the wrong  choice 
o f  method ,  i.e., to our  lack o f  industry ,  p r epa ra -  
t ive skill  o r  technical  possibi l i t ies ,  or  to the 
fo rma t ion  o f  o ther  stable compounds ,  which 
toge ther  have the same overal l  compos i t ion .  

I t  is, therefore,  difficult to know whether  a 
cer ta in  s t ructure  will exist or  not ,  and  equal ly  
difficult to  decide when to s top  our  a t t empt s  at  
p repa r ing  a pa r t i cu la r  compound .  F o r  these 
reasons  i t  wou ld  be desirable  to  make  the 
p red ic t ion  o f  s tructures in a systematic  way. This  
would  also be o f  great  help in indexing an  X- ray  
powder  d iagram,  since a rough  s t ructure  pre-  
d ic t ion  usual ly  yields the correct  space g roup  and  
the rough  cell d imensions  and  a tomic  parameters .  
As  an  example  o f  such an a p p r o a c h  we selected a 
class o f  compounds  o f  compos i t i on  A2BX6, on 
which little s t ructura l  research has been done  
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and which have structures closely related to a 
class of compounds of composition ABX3, which 
have been the subject of extensive research. 

In the present paper certain assumptions will 
be used, a/o the concept of a "basic lattice," some 
of Pauling's rules, and one of  those used by 
Gorter (1). The greater part of  these rules are 
derived from a simple ionic model, which has 
been shown to explain a great many structures of 
c o m p o u n d s  AmBnX p (1, 2). Other conditions will 
be imposed only in order to delimit the field of 
investigation. 

The AX3 structures formed by the positions of 
A and Xions in compounds ABX3 and AzBX6 are 
derived first. These AX3 structures need not (and 
do not) exist for ionic compounds, but they do 
exist in certain alloys. The method by which they 
are derived resembles that used for Beck for the 
derivation of structures for alloys AB3 (3). Next, 
it has to be examined which of the interstices can 
be completely or partly filled by B ions. Finally, 
the deviations from these "ideal" structures that 
result from a variation of the radii of A, B and X 
are derived. 

The structures derived in the present paper will 
be compared with the structures of the ABX3 
halides in Part II. In the second paper (Part II), 
also semiempirical rules will be derived for 
making the selection of a structure for a particular 
compound possible. These rules will be checked 
against the vast number of experimental 
structural data on ABX3 halides. In the 
third, fourth and fifth papers of this series, the 
method developed in Part I and tested in 
Part II will be applied to compounds A2BX6, 
AzBX6_p, Yp, and A2BX6_p,_p,, Yp,Zp., respec- 
tively ( X =  halogen; Y, Z =  halogen, O, OH, 
HzO, N, anion vacancy). Reviews concerning the 
properties of halides and their preparation (4-7) 
which were published recently, have been of  
great use to this investigation. 

1.2. Derivation of Ideal Structures 

It is our contention that most structures of 
inorganic compounds that may be described as 
ionic can be derived by placing that ion type 
(cations or anions) of which a larger proportion 
is present on a "basic" lattice. Except in the so- 
called antistructures these ions are the anions. 
The ions of  opposite charge are then inserted on 
part of the interstitial positions of this basic 
lattice. These ions will also form a basic lattice, 
as far as is possible for the given stoichiometry. 

We shall arbitrarily define the basic lattice as 
follows : Basic lattices are composed of triangular 
nets and would have a "packing density" of 
> 50 ~ ,  if the lattice points were occupied by 
spheres of  equal size that are in contact with each 
other. Basic lattices are: face-centred cubic (fcc), 
hexagonal "close-packed" (hcp) ~, " M o S i 2  ' '2 
body-centred cubic (bcc), simple cubic (sc), 
simple hexagonal (sh), etc. The arguments for 
choosing this definition can be related to the 
problem of finding the most likely distributions 
of charges in space that possess translation 
symmetry. Since the ions have a more or less 
variable size, the potential energy will reach a 
minimum at a certain distance between cations 
and anions. 

If  the ions do not fit exactly into the interstices 
of  a certain basic lattice a structure with lower 
potential energy may be attained by deforming 
the structure either with or without complete 
preservation of  the symmetry, or by choosing a 
different basic lattice. For  an example of  such a 
derivation, see Section 1.3. 

In addition to the above condition that charges 
of  the same sign have to form a basic lattice, each 
charge has to be surrounded by equally spaced- 
out charges of opposite sign, i.e., isonomously. 
Requirements of  isonomy as well as stoichio- 
metry may cause the basic lattices to be only 
partly filled. 

The above working rules have to be sup- 
plemented as follows: (a) Polarization may 
cause the surrounding of large and polarizable 
ions to be less isonomous (1) and may cause a too 
low "packing density" of  the basic lattice of the 
interstitial ions. (b) Large cations may replace 
part of the anions in a basic lattice in an ordered 
manner, if their size makes them fit there. 

When experimentally determined structures do 
not obey the rules discussed above, this must be 
traceable to other effects like cation-cation or 
anion-anion bonding, lone electron pairs, etc. 
These effects must be treated starting from 
another more refined model. In the present paper 
we have refrained from placing our ideas against 
the background of the work of  other investi- 
gators. An historical introduction and a more 

1 Together with the c (fcc) and the h (hcp) "close- 
packed" lattices mixed c-h  stackings can be mentioned: 
these are considered separately (Section 1.3). 

2 By "MoSiz" those lattices are meant in which each 
point has the same coordination such as the lattices formed 
by metal and silicon ions together in MoSi2, CrSi2 and 
TiSi2(8). 
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extensive discussion of  the rules will be given 
elsewhere (9). 

For  the derivation o f  the ideal structures for 
composit ions ABX3 and A2BX6, the following 
conditions are imposed only in order to delimit 
the subject: 

(a) The limitation of the stoichiometry AmBnXp 
to  ABX3 and A2BX6 we made already at the 
outset. 

(b) The large cations (A) together with the 
anions (X) form a three-dimensional lattice with 
overall composi t ion AX3. These lattices consist o f  
tr iangular nets, stacked in such a way that  each 
lattice point  has twelve nearest neighbors at  
equal distances: these are the well-known "close- 
packed"  lattices, a The choice of  the close-packed 
lattices is also influenced by the fact that  in mos t  
other lattices mentioned above no interstices with 
a regular surrounding of  lattice points are avail- 
able for  the B ions. 

(c) The A ions, i.e., the large ions present in 
smaller number,  shall not  be adjacent to each 
other. This condit ion results f rom any difference 
in electronegativity between A and X and is also 
valid for certain classes of  alloys. 

1.2.1. Derivation o f  AX3 Structures 

The close-packed lattices are composed of  tri- 
angular nets lying at a certain fixed distance f rom 
each other. For  deriving structures o f  com- 
position AXa we start by examining which of  the 
ordered arrangements o f  A and X ions in a 
triangular net (Fig. 1.1) o f  composit ion AX3, 
satisfy the above condit ion (c). With these layers, 
structures of  composit ion AXa can be built, if 
restriction (c) is taken into account. 

A systematic way to find all types of  order of  
A and Xions  in a tr iangular net is to determine all 
two-dimensional unit cells that  may occur in such 
a net. Restrictions have to be imposed in order to 
prevent the number  o f  unit cells f rom becoming 
infinite. The conventions concerning lattice 
description impose a restriction relating to the 
shape of  the two-dimensional  unit cell. The angle 
between the two translat ion vectors has to satisfy 
the condit ion 90 ° ~/3  ~ 120 ° (11). A unit cell that  
would not  fulfil this condit ion can be t ransformed 
into a cell with the same area, the angle of  which 
does satisfy this condition. N o w  a unit cell may  

3 We prefer to avoid the term "close-packing," since it 
is often interpreted too literally. The large ions that 
constitute a close-packed lattice need not be in contact 
with each other (9, 10). That is why we prefer the term 
"triangular net" to "close-packed layer." 

i S 
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Fro. 1.1. Tr iangular  net. The  posi t ions  o f  the  lattice 
points in a triangular net can be described by a hexagonal 
coordinate system. A translation vector is represented by 
the coordinates of the lattice point at the end of the vector. 
At the determination of all two-dimensional cells (Fig. 1.2), 
the first translation vector lies between OP and OQ. The 
second vector must make an angle 90 ° </3 ~< 120 ° with the 
first, and must, therefore, lie between OR and OS. 

still contain an infinite number  of  lattice points. 
Therefore, we confine our  attention to two- 
dimensional unit cells that  do not  contain more  
than 20 lattice points. This number  is, of  course, 
arbitrary, but  even so rather large three- 
dimensional unit  cells may occur. 4 In order  to 
derive structures o f  alloys essentially the same 
approach  was suggested by Beck (3). 5 Because 
our  approach  deviates slightly f rom the procedure 
followed by Beck, we briefly summarize our  
calculation by means o f  a flow chart  (Fig. 1.2). 
For  a more  detailed description the reader is 
referred to Beck's paper  (3). 

In order to obtain layers of  composi t ion AX3 
one quarter  o f  the lattice points have to be 
occupied by A ions and the remaining ones by J( 
ions. In other words, only those two-dimensional  
unit  cells can be selected that  contain four  lattice 
points or  a multiple o f  four. The most  simple 
patterns, three in all, are derived f rom unit  cells 
that  contain only four  lattice points. Of  these, two 
remain when condit ion (c) is obeyed, viz., the 
well-known triangular ( r )  (Fig. 1.3(a)) and 
rectangular (R) (Fig. 1.3(b)) types o f  order. 

4 The volume of the unit cell, if the smallest anions (F-) 
are used, would be about 800 A 3 (cubic stacking of layers). 

5 Unfortunately, his paper came to our attention only 
after we had finished the calculation of the two-dimensional 
unit cells. 
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FI6. 1.2. Flow-chart for the calculation of two-dimensional unit cells. The coordinates and the length of the first 
translation vector are stored in the matrix A[i]; those of the second translatioja vector in the matrix B [j] (Fig. 1.1). An 
upper limit is set to the maximal length of these vectors. In the course of the calculation a number of cells occur more 
than once, but the redundant cells can be removed afterwards. 
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Within certain delimitations on the size o f  the 
?hree-dimensional unit  cell, 6 we have found that  
)nly AX3 structures o f  which the patterns in the 
layer are composed of  T and/or  R motifs are in 
agreement with restriction (c). We should have 
liked to give a r igorous proof,  also for  all larger 
cells, but  we have not  been able to do so. Instead 
we shall give a simple reasoning that  makes this 
eem plausible. 

The ordered patterns that  are not  exclusively 
composed of  T and/or  R motifs can be derived 
f rom the larger two-dimensional unit  cells and 
can be described in terms of  parts (or motifs) o f  
more  simple 7 patterns [see, e.g., Fig. 1.3((1)]. In  

6 Only those three-dimensional structures were con- 
sidered that do not contain more than six different layers 
and of which the two-dimensional unit cell does not con- 
tain more than 20 lattice points. 

7 Simple means that the smallest unit cell by means of 
which the AX,, pattern can be described does not contain 
more than n + 1 lattice points. 

order to obtain the composi t ion AX3, motifs o f  
composi t ion AX3+~ have to be combined with 
motifs o f  composi t ion AX3_, in the correct  pro-  
portion.  However,  restriction (c) sets a lower 
limit to the an ion-ca t ion  ratio in a layer and this 
determines the composi t ion o f  the smallest motif.  
The limiting composi t ion of  an AX, layer satis- 
fying restriction (c) is AX2. This composi t ion can 
be realized in only one way, viz., the honeycomb 
pattern [Fig. 1.3(c)]. Such an AX2 layer can only 
be stacked with an )(3 layer [restriction (c)], so 
that  the X/A ratio is at least five. Locally the 
same holds for  the motif of  composi t ion AX2. 
Thus, all complex patterns o f  composi t ion AX3 
that  contain a mot i f  o f  composi t ion AX2 cannot  
be stacked in a close-packing to form an AX3 
structure without  allowing A-A neighbors. It  
remains to be examined, therefore, whether 
patterns o f  composi t ion AX3 that  are composed 
of  motifs o f  composi t ion AX3 only, can be 
stacked with each other without  violating 

(a) 

(c) 

( 

(b) 

FI~. 1.3. Various types of order of A and Xions in a layer. The A ions are hatched. (a) AX3 layer with triangular type 
of order: T pattern; (b) A X3 layer with rectangular type of order: R pattern; (c) A X2-1ayer, the honeycomb pattern; 
(d) example of AXa layer formed by a combination of motifs AX,,, viz., AXz (denoted by A), AX6 (denoted by B) and a 
combination of AX3(R pattern) and AX2 (denoted by C). 
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restriction (c). An AX3 layer with a pattern 
composed of T and/or R motifs can be stacked 
only if the pattern in the adjoining layers is 
identical. Thus, structures of  composition AX3, 
composed of layers with composition AX3 meet 
our requirements only if the pattern in the layer 
is of  the type T,,R, (m,n- 0, 1, 2 . . . .  ) and the 
patterns of  adjoining layers are identical. 

More structures of composition AX3 can be 
derived by examining a less well-balanced 
distribution of the A ions over the layers. In other 
words, we have to determine if layers of  com- 
position AX3+~, mixed with layers of  com- 
position AX3_~ in the proper ratio, may give rise 
to a structure of  composition AX3. The same 
arguments as given above can be used here. The 
limit for a layer of composition A X3_, is reached 
for e = 1. Such an AX2 layer can only be stacked 
with a layer completely filled with anions, giving 
rise to a composition AXs. Layers with composi- 
tions intermediate between AX3 and A J(2 must 
have patterns that are partly composed of the 
motif  of  the honeycomb pattern. Layers of this 
type cannot be stacked with layers of  composi- 
tions AX3+~ to form an AX3 structure without 
violating restriction (c). Thus, if the composition 
of the layer deviates from AX3, no structure of  
composition AX3 can be derived that meets our 
requirements. 

1.2.2. Derivation of ABX3 and A2BX6 Structures 

When triangular nets occupied by large ions are 
stacked to form a lattice in the manner of close- 
packed spheres [condition (b)], interstitial posi- 
tions of various types are left. The two largest of  
these sites 8 are surrounded by six and four large 
ions : when all of  these are anions, the interstitial 
positions, called octahedral and tetrahedral 
sites, respectively, may be occupied by small 
cations. 

For  structures AX3 that are composed of 
identical layers with T,,R, patterns (Section I. 
2.1), the number of  available octahedral and 
tetrahedral sites is as follows: (a) Between two 
T motifs only one interstitial position, viz., an 
octahedral site, can be occupied by a small cation. 
(b) Between two R motifs neither octahedral nor 
tetrahedral sites are available for B ions. 

This means that for various patterns T,,R, the 

s Three-coordinated sites will not be taken into account 
nor will square-pyramidal 5-coordinations. Trigonal- 
bipyramidal holes cannot be filled since the two face- 
sharing tetrahedra of which they are composed cannot be 
occupied. 

composition for complete occupation of octa- 
hedral sites by B ions is Am+nBmX3(m+n). Only one 
pattern, T, exists from which structures for the 
composition ABX3 can be derived. Structures of 
composition AzBX6 can be derived by complete 
occupation of the octahedral sites in all A J(3 
structures that are composed of TR or generally 
TnR, patterns, and by partial occupation of 
octahedral sites in structures composed of T, 
T2R or  generally TmR, patterns with m > n. 
Before investigating these possibilities of  cat ion- 
vacancy order in the octahedral sites, we must 
examine whether restrictions, as mentioned in 
Section 1.2, may also be applied to this case, in 
order to reduce the number of  possible structures. 
No restrictions as a result of Coulomb repulsion 
between the cations will be imposed on the type 
of  order in the layer of  octahedral sites, because 
the smallest distances between the octahedral 
sites in this layer, in structures of  composition 
ABX3, A3B2Xg, etc. are at least twice the smallest 
X - X  distances in the AX3 net. Since we made the 
arbitrary restriction that the largest two-dimen- 
sional cell in an AX3 layer does not contain 
more than twenty particles (Section 1.2), we shall 
confine ourselves in this case to cells that do not 
contain more than five positions over which small 
cations and vacancies can be ordered. The 
Coulomb repulsion between two layers of  octa- 
hedral sites will not be influenced very much 
either by the type of order of  cations and 
vacancies in these layers. Therefore, we have 
maintained the arbitrary limit to the number of  
layers (see footnote 6): the translation period in 
the stacking direction does not contain more 
than six layers 9 with a different type of  order of  
cations and vacancies. 

Although the number of  possible types of  order 
in one layer is small, a large number of  structures 
arises in three dimensions because the stacking 
order of  the layers of octahedral sites is arbitrary. 
The number of  possible AzBX6 structures 
derived from structures of  composition ABX3, 
A3B2X9, etc., irrespective of the stacking 
sequence of the AX3 layers, has been calculated. 
Within the geometrical delimitations we m a d e ,  
147 structures are obtained by leaving half of  
the octahedral sites empty in an ABX3 structure, 
and distributing the B ions equally over all layers. 
I f  a less well-balanced distribution of  the B ions 
is considered, another 70,000 structures are added 

9 That is, irrespective of the stacking of the AX~ layers 
that can be hexagonal (h), cubic (c) or mixed hexagonal- 
cubic (hhe, he, hhec, hee, etc.). 
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to this number .  By leaving some of the octahedral 
sites vacant  in  structures of composit ions 
A3B2X9, A,B3.¥12, etc., about  7000 structures for 
the  composi t ion A2BX6 can be found3  ° 

A small part  of  this large n u m b e r  of A2BX6 
structures remains if only those structures are 
permit ted in which the cat ion ar rangement  
a round  all an ions  is isonomous.  Of  these 
structures only those are allowed in  which most  
and  preferably all anions  have the same co- 
ord ina t ion  [Pauling's rule of pars imony (•2)]. The 
an ion  coordinat ion  will be investigated in Section 
1.2.3 with the aid of the space-filling polyhedra 
(SFPs) of  the anions.  

1.2.3. Selection of A2BX6 Structures by means of 
Space-Fill ing Polyhedra of the Anions  

The SFPs of  the anions  are the smallest 
polyhedra  formed by construct ing midway 

lo More detailed information is available on request. 

planes between an an ion  and all anions  sur- 
round ing  it (1). The cations can generally be 
found  on the corners, edges and  faces of  these 
polyhedra,  or even inside them. Al though the 
term SFP, according to the name, suggests that  
all SFPs in  the whole structure are of the same 
type, this need not  be the case. I f  the anions  are 
spread over more than  one crystallographic 
posit ion, there is one different SFP for each 
crystallographic posit ion. 11 The SFPs of  the 
anions,  constructed as ment ioned  above, for the 
c and  h stackings of  AX3 layers with T and  R 
pat terns are drawn in  Fig. 1.4. N o t  more t han  
these four  different space-filling polyhedra (SFP) 

11 The concept SFP is used in a more general sense than 
Niggli's "Wirkungsbereich." The latter is constructed in 
the same way as a SFP, but the midway planes are between 
one point of a crystallographic position and its neigh- 
boring points. For a more extensive discussion see 
Ref. (9). 

FIG. 1.4. The anion coordination in "close-packed" structures composed of AX3 layers with T,,,R,, pattern, indicated 
by means of their space-filling polyhedra (SFP). Black spheres are A ions, white spheres X ions. In the first column the 
relation between the anion coordination in a fcc anion lattice (denoted by a') and that in a fcc AX3 structure (denoted 
by a). The remaining primes denote different orientations of the polyhedra. In a c-stacked T motif only the anion poly- 
hedron (denoted by a) occurs and in a h-stacked Tmotif only the SFP (denoted by b). The anion coordinations in both 
the h- and c-stacked R motif are of two different kinds: c-stacking: 1 × (a) and 2 × (c) and h-stacking: 1 × (b) and 
2 × (d). The number of anions by which the corners of the SFPs are coordinated are indicated by a Roman figure (in 
the text by a Roman superscript to the left of the symbol of the ion). The equatorial plane in each SFP is hatched. The 
SFP (denoted by d), can be derived from the SFP (denoted by c') by replacing the bottom half by its mirror image. 
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occur for the anion when the occupation of 
interstitial positions available for smaller cations 
is not taken into account. "Close-packed" 
structures with other types of  order in the AX3 
layers and/or mixed cubic-hexagonal stackings 
do not give rise to new types of SFPs, but consist 
of a mixture of these four SFPs. 

L2.3.1. AzBX6 Structures Based on AX3 Layers 
with T Pattern 

In the structures that result when the stacking 
sequence of AX3 layers with T pattern is cubic, 
hexagonal or mixed cubic-hexagonal, only two 
different anion coordinations occur, when a 
possible occupation of the octahedral sites by the 
smaller cations is not taken into account [Figs. 
1.4(a) and (b)]. The smaller cations in the 
XIIAVIBVI)/3 structures are located on the 6- 
coordinated positions, indicated as VI in the 
figures. In order to derive structures of  composi- 
tion AzBX6 from the ABX3 structures, half of  
these smaller cations have to be removed. Only 
six different SFPs result in this way: one with two 
cations, one with one cation, and one with no 
cation in the octahedral positions, both in the e 
(Fig. I. 1.4(a)) and in the h (Fig. I. 1.4(b)) stacking. 
The anion coordination as shown by the SFP for 
the c stacking with vacant octahedral sites will 
not occur in AzBX6 compounds, since the co- 
ordination of the anion by a square of A ions is 
very unfavorable even when the polarizability of  
the anion is large? / This SFP can only be ex- 
pected if the anion in the center is replaced by a 
water molecule or also perhaps by an hydroxyl 
ion, because the H + ion(s) then complete the 
anion coordination in such a way that the co- 
ordination becomes more isonomous. This is also 
valid for the anion coordination shown by the 
SFP of the h stacking with vacant octahedral 
sites. I f  the SFPs without B ions are not allowed, 
the SFPs with two octahedral sites occupied can 
not occur either in AzBX6 structures, so that only 
the two SFPs with one octahedral site occupied 
are left. Stacking of the SFPs with one octahedral 
site occupied leads to a number of  A2BX6 
structures, in which the A X3 layers can form a 
cubic, a hexagonal and any mixed cubic-hexa- 
gonal stacking. 

C Stacking. The SFP of Fig. 1.4(a) with one 

12 In the structures of alloys of composition AB3 the 
coordination of the B atom by a square of A atoms can 
occur, because the electrons are not localized like, e.g., 
in the structure of Cu3Au. 

octahedral site filled can be stacked in only one 
way as will be obvious from the following 
reasoning. I f  one octahedral position is chosen 
to contain a B ion, the choice for six other octa- 
hedral positions is fixed. Three out of  these are 
situated in the layer with octahedral positions 
immediately above the first one and the remaining 
three are situated in the layer below. Each of these 
six positions in turn fixes the choice for the octa- 
hedral sites immediately surrounding it. The 
structure that results will have B ion layers 
alternately filled and empty. This is the structure 
of  KzPtC16 (13). 

H StackbTg. The SFP of Fig. 1.4(b) with one 
octahedral site occupied can be stacked in several 
ways. The only restriction is that, if one octa- 
hedral position is chosen to contain a B ion, the 
choice for all octahedral positions on one row 
parallel to the c axis is fixed. The octahedral sites 
on this row will be alternately filled and empty. 
In other words: the pattern in one layer is repeated 
in the next layer, but now the positions of  B ions 
and vacancies are interchanged. Thus, only the 
type of order in one layer can be varied inde- 
pendently. The number of  structures that can 
thus be derived is 15. 

The space groups and the cell dimensions of  
these structures are given in Table I. 1. Only one 
of these 15 structures has each kind of ion in only 
one crystallographic position, viz., the structure 
in which the layers with octahedral sites are 
alternately vacant and occupied by B ions. This 
structure is adopted by K2GeF6 (14). The remain- 
ing 14 structures have been excluded, since they 
do not follow so well the rule of  parsimony. 

Mixed Cubic-Hexagonal StackhTgs. It  is clear 
that for each of  the mixed cubic-hexagonal 
stackings only one structure will be found, 
because one c-stacked AX3 layer determines the 
type of  order in the two surrounding layers of  
octahedral sites: one layer is filled with B ions 
and the other is empty. All these structures with 
mixed stackings, therefore, have layers of  octa- 
hedral sites that are alternately occupied and 
empty. 

L2.3.2. A2BX6 Structures Based on AX3 Layers 
with TmRn Patterns 

A disadvantage of the structures containing 
the SFPs of Figs. 1.4(a) and (b) with only one 
octahedral site occupied may be that the sur- 
rounding of the anion is rather irregular. This is 
true to a greater extent for the anion coordination 
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TABLE I 

STRUCTURES OF COMPOSITION A2BX6 DERIVED BY REMOVING HALF OF THE B IONS FROM THE h-STACKED 
ABX3 STRUCTURE" 

Occupation of  
octahedral N u m b e r  

Two-dimensional sites in the of  
unit eelP units 

1st 2nd Space Cell parameters,  expressed in the A2BX6 
Area A B y layer layer group shortest X - X  distance in the cell 

- -  120 ° 1 0 P]ml ; Daaa a = 2 c = 2/3~/6 Z = 1 

2 1 2 120 ° 1/2 1/2 Pnnm; D2 ~2 a = 2C3 b = 2/3~/6 c = 2 Z = 2 
4 2 a/3 90 ° 1/2 1/2 Pbcn; D~ 4 a = 2/3~/6 b = 4 c = 2~/3 Z = 4 
4 4 1 120 ° 1/2 1/2 Pnma; D2 ~6 a = 4a/3 b = 2 e = 2/3~/6 Z = 4 

3 3 1 120 ° 1/3 2/3 C2/m;C~h a=6~/3 b = 2  c=2/3v'6 /3=90 ° Z = 6  
3 ~/g ~/3 120 ° 1/3 2/3 P]lm; D~a a ~ 2~/5 c = 2/3~/6 Z =  3 

4 2 2 120 ° 1/4 3/4 P3ml; DIs a = 4 e ~ 2/3~/6 Z = 4 
4 2 ~/3 90 ° 1/4 3/4 P2/m; CI~ a ~ 2"v/3 b = 4 c ~ 2/3~/6 13 = 90 ° Z = 4 

4 4 1 120 ° 1/4 3/4 P2/m;C~h a=4a/3 b = 2  e = 2/3~/6 f l=90 ° Z = 4  
5 ~/3 ~/7 109°6 , 1/5 4/5 C2/m;Ca2h a = 2  b=10~/3 e~2/3~/6 ~=90  ° Z = 1 0  
5 1 5 120 ° 1/5 4/5 C Z/m; C2a. a = 2~/3 b = 10 c = 2/3C6 /3 = 90 ° Z = 10 
5 x/3 ~/7 109o6 , 2/5 3/5 C2/rn;C~h a~2~/3  b = 1 0  c~2/3~/6 fl=90 ° Z = 1 0  
5 ~/3 ~/7 109o6 , 2/5 3/5 C2/m;C~h a~2~/3  b=10  c~2/3v /6  fl=90 ° Z = 1 0  
5 1 5 120 ° 2/5 3/5 C2/m;C~h a=10~/3 b = 2  c=2]3C6 ]3=90 ° Z = 1 0  
5 1 5 120 ° 2/5 3/5 C2/m;C32~ a=10~/3  b = 2  c=2/3a/6 /3=90 ° Z = 1 0  

"In all structures only one anion coordination occurs: viz., the SFP of Fig. 1.4(b) with one octahedral site occupied. 
The alea is expressed in the number of B ions in the two-dimensional unit cell, the axes A and B are expressed in 

the shortest B-B distance ( -  two times the shortest X - X  distance). 

in the c than for tha t  in the h stacking. Choosing 
AX3 layers with T R  pat tern this irregular an ion  
coordinat ion can be partly avoided. 

in  a structure derived by stacking AX3 layers 
with TR pattern,  various types of anion co- 
ord ina t ion  occur. In  the c-stacking, the SFP of 
Fig. 1.4(a) with two B ions, that  with one B ion, 
and the SFP of Fig. 1.4(c) occur in the propor t ion  
l : 1 : 1. In  the h stacking, the SFP of Fig. 1.4(b) 
with two B ions, that without  B ions, and the 
SFP of Fig. | .4(d) occur in the propor t ion  3 : 1 : 2. 
The SFP of Fig. 1.4(b) without  B ions will most 
probably  not  occur for ionic compounds  because 
of its non i sonomous  an ion  coordinat ion.  There- 

f o r e ,  the hexagonal stacking and thus the mixed 
hexagonal-cubic  stackings of the AX3 layers 
with TR pattern and with more complicated TmR, 
patterns are not  expected for A2BX6 compounds.  
A2BX6 structures based on the c stacking of AX3 
layers with T2R2 pat tern  are no t  expected either, 
since they conta in  a non i sonomous  anion co- 
ordinat ion,  viz., the SFP of Fig. 1.4(a) without B 

17 

ions. The same argument  is used to exclude 
A2BX6 structures derived from all other T,,R,, 
patterns in which at least two successive R motifs 
Occur .  

In  structures composed of AX3 layers with 
T ,R  patterns,  (n - 1)/2 octahedral posit ions must  
remain empty to at ta in  the composi t ion A 2 B X  6. 
The an ion  coordinat ion  of Fig. 1.4(a) wi thout  
B ions can be avoided only, however, if no t  more  
than  ( n - 2 ) / 2  octahedral  posit ions remain  
empty. Therefore, these A2BX6 structures can 
also be excluded. For  the same reason A2BX6 
structures derived from a c stacking of more 
complex pat terns like T2RTR can be excluded. 

Therefore, A2BX6 structures can be bui l t  only 
from A X3 layers with T pat tern and c-stacked 
A X3 layers with T R  pattern.  The condi t ions  
which determine whether a part icular  c o m p o u n d  
A2BX6 will have a structure based on the T R  
pat tern  or one of the structures based on the T 
pattern,  will be discussed in greater detail in  
Par t  I II  of  this series of papers. 
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1.2.4. Removal or Substitution of  Anions in the 
Ideal Structures 

By removing some anions from structures of  
compositions AzBX6, A3BzXg, etc., new structures 
arise with compositions AzBXs~, A2BX4~2 
AaBzXT~2, etc. a3 From the SFPs of the anions 
(Fig. 1.4), it is evident where the anion vacancies 
in these structures might occur. In the structures 
derived in this paper anions may be removed 
most easily from those positions that are sur- 
rounded by cations with a low charge and/or 
by a small number of  cations? 4 This condition 
is fulfilled for the anions of  the SFPs of the R 
pattern (Figs. 1.4(c) and (d)) and for the anions 
of  the SFPs of the Tpat tern if the two octahedral 
sites were vacant (Figs. 1.4(a) and (b)). A more 
extensive discussion of A2BX6 structures in which 
the X ions are partly removed will be given in 
Parts IV and V of  this series of  papers. 

In the foregoing, structures have been derived 
for compounds of composition ABXa and 
A2BX6. It  would be a logical extension to examine 
how the anions would arrange themselves in these 
structures if they were of  a different kind, in other 
words, to derive structures of  compositions 
ABXa_p, Yp, and AzBX6_p, Yp, in which X may 
differ from Yboth in size and charge. These types 
of  order of  X a n d  Ycan be determined in at least 
two ways: (1) For each type of anion the most 
suitable SFP may be selected and these SFPs can 
be stacked in such a way that the desired com- 
position is obtained. (2) Instead of starting f rom 
the SFP of the anion it is possible to determine the 
ways in which the various types of  BX6_p, Y~,, 
octahedra can be joined. This has been investi- 
gated by Smirnova (15) for a more general class 
of  compounds. 

Utilizing structures with ordered arrangements 
of  X and Y, the ABXa and AzBX6 structures 
derived above may be used to set limits to the 
number of  possible structures. In order to select 
f rom the derived structures those that are the 
most suitable for a certain compound, rules have 
to be constructed. A more extensive discussion of 
structures of  AzBX6 compounds with different 
types of  anions will be given in Parts IV and V of 
this series of  papers. 

13 ~) Denotes an anion vacancy. 
a4 The coordination of the cations must also be taken 

into account, especially when their charge is high and/or 
their coordination is low (the inverse application of 
Pauling's second rule). The above-mentioned structures 
are in accordance with this condition. 

1.3. Deviations from the Ideal Structures 15 

Starting from a basic lattice we derived struc- 
tures with compositions ABX3 and AzBX6. 
Among these, those structures are "favorable" 
that meet the following requirements as far as 
possible: 

(a) The surrounding of each of the anions, as 
well as of  the cations, by ions of  opposite sign, 
has to be as isonomous as possible, when its 
polarizability is low or, if  not, also when the 
coordination of the ion is high (1). 

(b) The charge of  each of the anions has to be 
compensated by the sum of the charges of  the 
cations immediately surrounding it, divided by 
their respective coordination numbers. It  is 
preferable to correct these coordination numbers 
for variations in the cat ion-anion distances [See, 
e.g., Baur's paper (16) on Pauling's second rule, 
also for references]. 

(c) Pauling's first rule (•2): "A  coordinated 
polyhedron of anions is formed about  each cation, 
the cat ion-anion distance being determined by 
the radius sum and the coordination number 6f 
the cation by the radius ratio," For  the ABJi~ 
and A2BX6 structures that are derived here, the 
fact that the starting point was the basic lattice 
limits the number of different cation coordination 
polyhedra. The radius ratio rule may be used as a 
first approximation to find out whether the inter- 
stices in the basic lattice are too large or too small. 
When this is the case, such deformation will take 
place that yields a gain in potential energy so 
large than any possible loss in isonomy is 
outweighed. 

(d) Pauling's fifth rule (•2): "The  number of 
essentially different kinds of  constituents in a 
crystal tends to be small." We prefer a more 
restrictive formulation (9): The same ions will 
prefer to have the same coordination, as regard 
number and polyhedron shape, of  oppositely 
charged ions, if this can be achieved for the given 
stoichiometry and if the structure meets the 
requirements a-c. This may mean that chemically 
identical ions prefer to occupy an identical 
crystallographic position, 16 with the above 
restrictions. Neither for Pauling's fifth rule nor 
for either of  the other formulations, have we 

15 In this section deformations of the ideal ABXa and 
A2BX6 structures as a result of the electronic structure of 
the Bions, e.g., Cu 2+ , Sn 2+, will be left out of consideration. 

16 That is, the same crystallographic position with only 
one value for each of the parameters. 
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'ound a justification from electrostatic theory 
'.0 far. 

The ABXa structure with c-stacked AX3 layers 
is completely in accordance with the above 
requirements. In the ABX3 structure with h- 
°tacked AX3 layers the surrounding of the anion 
is less isonomous than in the case of the c stacking, 
but this disadvantage can be overcome by the 
polarization energy. For the composition A2BX6 
the structure derived from the h stacking of the 
Tpat tern  has a more isonomous anion coordina- 
tion than the structure with the c stacking of these 
AX3 layers. This anion coordination of the c 
stacking (Fig. 1.4(a)) becomes more regular when 
the anion is moved from the center of  the SFP 
towards the octahedral position occupied by the 
B ion. ABX3 andA2BX6 structures derived f rom 
mixtures of the h and e stackings do not conform 
to requirement (d) but a gradual change of radius 
ratios of the ions and the anion polarization 
stabilizes these structures. In the c-stacked A 2 B X  6 
structure derived from the TR pattern, the anions 
do not meet the requirements (b) and (d), but the 
~-oordinations of two thirds of the anions are more 
~onomous than in the c-stacked A z B X  6 structure 
derived from the T pattern. 

So far the third of  the above requirements was 
irrelevant to the derivation of the structures, 
because our restriction to the close-packed 
lattices means that the A ion is 12-coordinated, 
and in the course of the derivation it appeared 
that the only interstitial position that can be 
occupied by a small cation is a position sur- 
rounded by an octahedron of anions. When we 
wish to select compounds that may have one of 
these structures, requirement (c) has to be taken 
into account, For, if a choice is made for the 
ions A, B and X, the A ions will generally not 
be of the same size as the X ions and the B ions 
will not fit exactly into the octahedral holes. 
Since the structures derived above are very 
favorable, they will have a fair tolerance for 
deviations from the ideal size ratios. How large 
this tolerance exactly is, will depend on the 
difference in energy between the ideal structure 

, and a deformed structure with a lower potential 
. energy. When the mutual size ratios of  the A, B 

and X ions deviate too strongly from the ideal 
values, the structures will adjust themselves, i.e., 
they deform to make the cations fit into the 
interstices. These deformations are discussed by 
introducing a difference in size between A and 
X ions (Section 1.3.1) or by varying the rB/rx 

"ratio (Section 1.3.2), both between certain limits. 

1.3.1. Deformations of  the Ideal Structures Due 
to a Difference in Size Between A and X Ions 

We have started by assuming that the A and X 
ions together constitute a basic lattice and limited 
ourselves to "close-packed" lattices. When the 
difference in size between A and X ions becomes 
so large that the ideal structures have to deform, 
those deformations are most likely in which the A 
ions fit best. The stability of  various deformations 
applied to make the A ions fit may be roughly 
compared by calculating the space filling, i.e., the 
percentage of space filled by hard spheres. A 
similar approach is usual for deriving structures 
of  alloys [See, e.g., Ref. (17)] and was used by 
van Vucht (18) for structures of  alloys ABaJ 7 
It is, however, a rather difficult problem to find 
that deformation of the three-dimensional AXa 
structure that possesses the best space-filling. We 
ought to consider, however, that the ideal 
structures were very favorable and the "advan-  
tages" of  these ideal structures (i.e., in how far 
they meet the requirements a -d  enumerated 
above) have to be preserved as much as possible. 
Consequently, in designing deformed structures 
we must maintain the symmetry of the ideal 
structures, i.e., preserve the three-fold and/or 
four-fold axes, as long as possible. 

A B X  3 Structures. First those deformations will 
be derived in which the three-fold axis is main- 
tained. 

A necessary condition for a three-dimensional 
structure to possess trigonal symmetry is that the 
layers possess trigonal symmetry. In order to 
maintain the trigonal symmetry in the AX3 layer, 
when the A ion is larger than the X ion, the layer 
has to deform as given in Fig. 1.5(a) [T(1) layer]. 
When this layer is stacked hexagonally, the 
densest packing is obtained when the large 
ion of the adjoining layer fits in the large X 3 
triangle. Besides, this structure conforms equally 
well to the requirements a -d  as the ideal structure. 
The cubic stacking of these T(1) layers gives rise to 
two different structures: a structure with two 
different types of  octahedral holes and a structure 
with equal but much deformed octahedral holes. 
In both structures the advantages of  the ideal 
structure as regards requirements a, c and d, are 
lost for the greater part. Therefore, we consider 

17 His assertion that the space filling for the h stacking of 
deformed AXa layers with R pattern is better than that 
for the h stacking of the deformed AXa layers with T 
pattern (Fig. 1.5(a)) appeared to be in error, as he com- 
municated to us. 
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Ca) 

( 
(b) 

(c) 

FIG. 1.5. Deformations of AX3 layers with T pattern, 
due to a too large A ion IT(l) layer, Fig. 1.5(a)] or a too 
small A ion [T(3) layer, Fig. 1.5(c)]. A T(2) layer is equally 
expanded in all directions, so that the full cubic symmetry 
is preserved (Fig. 1.5(b)). 

it unlikely that one of these deformations will be 
realized, and the ideal structure has to expand 
equally in all directions with preservation of  the 
symmetry. The AX3 layers forming this structure 
are shown in Fig. 1.5(b) [T(2) layer]. This sub- 
ject is discussed more extensively in Part  l l  of 
this series of  papers. 

When the A ion is smaller than the X ion, the 
three-fold axis will be maintained when the AX3 
layer is deformed as shown in Fig. 1.5(c) [T(3) 

layer]. 18 Only the c stacking of these layers is 
expected, for in the h stacking the anion coordina- 
tion is nonisonomous. 

Thefour-foM axis is present only in the struc- 
ture with c-stacked AX3 layers. When the A ion 
is larger than the Xion,  no irregular deformation 
in which the four-fold axis is maintained is 
probable, for in the structure the BX6 octahedra 
are joined by all corners and those can only expand 
in all directions to make room for the large A ion. 
When the A ion is smaller than the X ion, an 
irregular deformation of  the BX6 octahedra 
cannot occur either, because requirement (b) is 
then violated. The potential energy can only be 
decreased by turning the octahedra around the 
four-fold axis. When the rotation around this axis 
is so large that the A ions have to shift f rom their 
original positions, their coordination number is 
lowered from 12 to 8 and the symmetry of the 
structures may be lowered. The A ions can be 
displaced in more than one way, of  which the most 
simple case is realized in the GdFeO3 structure 
(20). More details are given in Part  II. 

A2BX6 Structures. In the A 2 B X  6 structures 
derived from the T pattern the most likely 
deformations can be determined easily with the 
aid of  the deformations derived for the ABX3, 
structures. When the A ion is larger than the Xion, 
the e stacking of T(I)  layers (Fig. 1.5(a)) is also 
allowed, since only one half of  the octahedral 
positions are occupied. So the full symmetry of 
the ideal structure is preserved. When the A ion 
is smaller than the X i o n  T(3) layers (Fig. 1.5(c)) 
will be formed. However, for these A2BXo 
structures not the h stacking, but the e stacking of 
these layers is unfavorable, due again to a non- 
isonomous anion coordination. Rotation around 
the four-fold axis results in the same framework 
of twisted octahedra as for the ABX3 structures. 
This time the deformation is not carried forward 
by corner sharing of the octahedra, but by anion-  
anion repulsion. Here again the A ions can be 
displaced in various ways. 

The c-stacked A2BX6 structure derived from 
the TR pattern has tetragonal symmetry. It  has 
to be deformed first in order to be able to corn- • 
pete with the other ideal A 2 B X  6 structures and 
afterwards deformations due to the differences 
in size of  A and X ions have to be considered. 
The value of the parameters of  the A and X ions 
for which this structure is more favorable have 

18 This deformation can also be described by a rotation 
of the A X3 triangles around the three-fold axes, as has been ,  
done by H. D. Megaw (19). 
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not  been calculated as far as we know. 19 N o  
conclusions can yet be made,  therefore, as to 
whether the parameters of  a particular com- 
pound may be influenced by a difference in size 
between A and X ions or not. A more  extensive 
discussion of  these deformations is given in 
Part  III.  

1.3.2. Deformations o f  the Ideal Structures Due  
to  Deformed BX 6 Octahedra 

Most  o f  these deformations are the same as 
when the A and X ions differ in size. An  increase 
in size o f  the BX6 octahedron has the same effect 
as a decreasing rA/rx ratio, and vice versa. 

When the B ion is too large for the octahedral  
position, an expansion of  the BX6 octahedra can 
occur either equally along all B - X  directions or  
by preserving only the three-fold axis. When the 
BX6 octahedra are expanded by preserving only 
the three-fold axis, the deformation of  the AX3 
layers may be similar to T(1) layers or T(3) 
layers. For  ABX3 compounds  only the h stacking 
o f T ( l )  layers is allowed (Section 1.3.1) and in this 
stacking the B ions are now situated above the 
large )(3 triangles. Such a structure is not  very 
probable, because the Xion  moves in the direction 
of  the A ions (Fig. 1.4(b)). For  A2BX6 compounds,  
both the c and the h stackings o f  T(1) layers are 
allowed (Section 1.3.1) and in this stacking the 
B ions are situated now above the large )(3 
triangle. The c structure thus derived is not 
expected to occur, since the B ion prevents the 
anion coordinat ion from adjusting itself. The h 

s t ruc tu r e  may occur for particular compounds ,  
as will be discussed in Part  III .  Structures derived 
from T(3) layers for ABX3 compounds  can only 
occur when the stacking of  the layers is cubic 
(Section 1.3.1). Structures o f  composit ion AzBX6 
are expected only when the stacking of  the T(3) 
layers is hexagonal (Section 1.3.1). Increase in 
size of  the BX6 octahedra with preservation o f  
the four-fold axis gives rise to the same deforma- 
tions of  ABX3 and A z B X  6 structures as in the 
case of  a decreasing rA/rx ratio. 

When the B ion is too small for the octahedral  
hole, a contract ion o f  the BX6 octahedra occurs. 
When this contract ion is equal in all directions, 
the effect resembles the effect o f  an increasing 
rA/rx ratio. The same is true for a contraction o f  
the BX6 octahedra in which only the three-fold 
axis is maintained for h-stacked AX3 layers. 

19 H. G. yon Schnering pointed out (21) that the value 
of the parameters must be adjusted in order to make the 
structure more favorable. 

In  order to extend our  understanding o f  
structures ABXa and A 2 B X  6 in which the radii o f  
A and B gradually approach  each other, we must  
probably  start f rom other basic lattices. Examples 
o f  such types are LuMnO3 (22), Y203 (23) and 
]3-Rh203 (24). A n  experimental and theoretical 
investigation on ABX3  halides o f  this type has 
been started in our  laboratory,  but the results are 
not  yet available. Nevertheless, using the above 
reasoning the structures o f  a vast number  o f  
compounds  reported in the literature can be 
classified and the structures o f  new compounds  
can be predicted, as will be shown in the following 
parts. 
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